Arrhythmogenic right ventricular cardiomyopathy

Wing-Hong Fung
Chi-Kin Chan
John E. Sanderson

Follow this and additional works at: https://www.jhkcc.com.hk/journal

Part of the Cardiology Commons, Cardiovascular Diseases Commons, and the Medical Education Commons

Recommended Citation
Wing-Hong Fung, Chi-Kin Chan, John E Sanderson, Arrhythmogenic right ventricular cardiomyopathy Journal of the Hong Kong College of Cardiology 2001;9(3) https://doi.org/10.55503/2790-6744.1178

This Review Article is brought to you for free and open access by Journal of the Hong Kong College of Cardiology. It has been accepted for inclusion in Journal of the Hong Kong College of Cardiology by an authorized editor of Journal of the Hong Kong College of Cardiology.
Arrhythmogenic Right Ventricular Cardiomyopathy in Chinese Patients

WING-HONG FUNG, CHI-KIN CHAN, JOHN E SANDERSON

From Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong

FUNG ET AL.: Arrhythmogenic Right Ventricular Cardiomyopathy in Chinese Patients. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial form of cardiomyopathy predominantly affecting the right ventricle but may progress to involve the left ventricle as well. At the late stage of the disease, it is sometimes difficult to differentiate with other forms of dilated cardiomyopathy. In most affected families, the mode of inheritance of the disease is autosomal dominant. Lately, the gene accounting for the autosomal recessive form of ARVC, which was associated with palmoplantar keratosis, was identified. ARVC can present with sudden cardiac death without any preceding symptoms in the young population. Therefore, ARVC must be included in the differential diagnosis in patient surviving an episode of sudden cardiac arrest, especially in those with positive family history of sudden cardiac death. Most of the information about ARVC comes from Europe and United States. This article aims to provide a brief review of ARVC and the clinical characteristic of the disease in our local population.(J HK Coll Cardiol 2001;9:149-152)

Arrhythmogenic right ventricular cardiomyopathy

摘 要
心律失常性右心室心肌病是一種具有家族特征的心肌病，主要影響右心室，但隨著病程的發展也可累及左心室。在疾病的終末期，有時很難與其它的擴張性心肌病加以鑑別。大多數受累的家族中，該疾病的遺傳模式為常染色體顯性遺傳。近年，人們在基因水平認識到了心律失常性右心室心肌病常染色體隱性遺傳的模式，它是與手足皮膚角化症伴隨發生的。在青年人群中，心律失常性右心室心肌病可以表現為突發性心臟的猝死而無任何前驅症狀。因此，對於突發性心臓停搏而生還的患者，在鑑別診斷中必須將心律失常性右心室心肌病考慮在內。絕大多數心律失常性右心室心肌病的報道是來自於歐美。本文旨在對心律失常性右心室心肌病作一簡要的回顧，並對本地區該病的臨床特徵加以闡述。

關鍵詞：心律失常性右心室心肌病

Address for reprints: Dr. Wing-Hong Fung
Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, NT, Hong Kong
Tel: (852) 2632 3131, Fax: (852) 2637 5396

Received June 8, 2001; revision accepted July 1, 2001
Introduction

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial form of cardiomyopathy with autosomal dominant inheritance in most cases.\(^1\) The most tragic characteristic of this condition is that it causes sudden arrhythmic death in relatively healthy young persons without any preceding symptom. The manifestation of the disease varies between different ethnic groups. In Naxos disease affecting Greece, ARVC is strongly associated with the dermatological condition, palmoplantar keratosis.\(^2\) In Veneto region of Italy, however, sudden cardiac death (SCD) in young athletes is the major manifestation of ARVC with one-fifth of SCD related to the disease.\(^3\) There is very limited information about ARVC in Chinese population. This article aims to provide information about the clinical characteristics of ARVC in local population and a brief review of management of this disease.

Pathology and Genetics

ARVC is characterized pathologically by fibrofatty replacement of right ventricular myocardium. The arrhythmogenic substrate may be explained by the slow conduction between surviving fibres interlaced in fibrous tissue and fat.\(^4\) Increased automaticity by enhanced adrenergic tone may be the triggering factor and possibly account for induction of ventricular tachycardia during exercise.\(^5\) By linkage analysis, 6 chromosomal loci responsible for ARVC were identified.\(^6\) Recently, the gene accounting for Naxos disease, ARVC with palmoplantar keratosis, was also delineated. In this autosomal recessive disease, deletion of plakoglobin accounted for the disorder.\(^7\)

Diagnostic Criteria

The most commonly adopted diagnostic criteria for ARVC were proposed by the working group on myocardial and pericardial disease of the European Society of Cardiology and of the scientific council on cardiomyopathies of the International Society and Federation of Cardiology.\(^8\) It comprised of 6 categories for diagnosis of ARVC (Table 1). Each category was subdivided into major and minor criteria. The diagnosis of ARVC was established if two major or one major plus two minor or four minor criteria from different categories were fulfilled.

Clinical Characteristic in Chinese Patients

In addition to our previous report,\(^9\) there are now a total of 12 patients with ARVC being followed up in our arrhythmia clinic at April 2001 based on the above diagnostic criteria. The latest diagnosed patient was detected during family screening. Her clinical work-up was still incomplete though one major and two minor criteria were already fulfilled. For the remaining 11 patients who have completed the clinical work-up, the commonest presenting symptoms were palpitation and dizziness. Their mean age of clinical presentation was 42.6±14.8 years. Ventricular tachycardia (VT) with left bundle branch block (LBBB) morphology as the initial presentation was present in 6 patients. One patient presented with resuscitated sudden cardiac death. Two patients had positive family history of premature sudden death. The latest diagnosed patient detected by family screening was the sister of the patient with a positive family history. With regards to the electrocardiograph (ECG), 6 patients showed evidence of repolarization abnormality with T wave inversion in V2-3 in the absence of right bundle branch block. In addition to the 6 patients who had spontaneous VT as initial presentation, one patient had VT with LBBB morphology during treadmill test. For the 9 patients who agreed for electrophysiology study (EPS), 4 patients had inducible monomorphic VT of same morphology as clinical VT. All patients had normal left ventricular function by echocardiography. Right ventricular dilatation was detected in 5 patients. Eight patients had undergone cardiac catheterization and 3 patients had dilated right ventricle (RV) with global hypokinesia. Ten patients had magnetic resonance imaging (MRI) examination. All patients had RV abnormality, either with RV dilatation with wall thinning or fibrofatty replacement. The most commonly affected area in RV was free wall. The mean follow-up period for the 11 patients was 42.3±58.3 months. Five patients had implantable cardioverter defibrillator (ICD) implanted. These patients had either history of cardiac arrest or haemodynamically unstable VT or unexplained syncope.
with inducible VT. Six patients were prescribed with antiarrhythmic agents. The most commonly used antiarrhythmic agents were amiodarone and beta-blockers. Two patients had successful radiofrequency ablation (RFA) done for either VT or symptomatic ventricular ectopics because of either failure or intolerable side effects of antiarrhythmic therapy. No patients died during the follow up period.

Investigation

The primary aim of investigation for patients suspected to have ARVC is two-fold. First to confirm the diagnosis and secondly is for risk stratification. One of the major diagnostic criteria for ARVC is global or regional RV dysfunction. Available imaging techniques to assess RV anatomy and function include echocardiography, RV angiography and MRI. RV angiography was the gold standard of investigation modality for ARVC in early 1990’s. However, it was an invasive procedure and was soon replaced by MRI and echocardiography. Echocardiography is a non-invasive technique and useful for family screening. However, the detection rate in our cohort by echocardiography was less than 50%. MRI seems to be the most promising investigation modality. MRI has the unique property to differentiate fatty tissue from myocardium. Cine MRI is even better to show RV regional dysfunction. However, experience played an important role in the correct interpretation of MRI for diagnosis of ARVC.

Risk stratification for future arrhythmic events in patients with ARVC is vital. Unfortunately, there is no reliable method to predict these tragic events. Young age of onset, strenuous exercise, strong family history of sudden death, extensive right ventricular disease, left ventricular involvement, syncope or VT are associated with worse outcome. The role of EPS in stratifying the risk of ARVC patients is controversial.

| Table 1. Diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy |
|----------------------------------|---------------------------------|---------------------------------|
| **Major** | **Minor** |
| Global and/or regional dysfunction and structural alterations | - Severe dilatation and reduction of RV EF with no LV impairment | - Mild global RV dilatation and/or EF reduction with normal LV |
| | - Localized RV aneurysms | - Mild segmental RV dilatation |
| | - Severe segmental RV dilatation | - Regional RV hypokinesia |
| Tissue characterization of wall | Fibrofatty replacement of myocardium on endomyocardial biopsy | Inverted T-waves in right precordial leads (V2-V3) in the absence of RBBB |
| Repolarization abnormalities | | Late potentials (signal-average ECG) |
| Depolarization/conduction abnormalities | Epsilon waves or localized prolongation (>110 ms) of the QRS complex in right precordial leads (V1-V3) | - LBBB type VT (sustained and nonsustained) on ECG, Holter monitoring or exercise test |
| | | - Frequent ventricular extrasystoles (>1000/24hr) on Holter monitoring |
| Arrhythmias | | |
| Family history | Familial disease confirmed at necropsy or surgery | - Family history of premature sudden death (<35 years) due to suspected RV dysplasia |
| | | - Family history (clinical diagnosis based on present criteria) |

RV=right ventricle; LV=left ventricle; EF=ejection fraction; RBBB=right bundle branch block; LBBB=left bundle branch block; ECG=electrocardiograph.
Treatment and Prognosis

There is no universally accepted guideline for the management of patients with ARVC. Available treatment modalities for symptomatic patients are antiarrhythmic therapy, RFA, ICD and surgery. It is unclear whether these modalities of therapy are useful in asymptomatic subjects identified by family screening. ICD is indicated in patients who have survived an episode of ventricular fibrillation cardiac arrest or haemodynamically unstable VT. For patients with haemodynamically stable VT, EPS guided antiarrhythmic therapy may be adopted though the effectiveness of such approach has not been tested in any randomized prospective study. RFA may be useful for drug-resistant arrhythmia but its role for prevention of SCD is unclear. Surgical RV disconnection is now less commonly performed. In a recent report involving 37 families with ARVC, the risk of death was only 0.08 patient/year during a 8.5 year follow up. The overall prognosis in patients with ARVC is not bad. The most important clinical issue is how to risk stratify these patients and implement appropriate therapy.

References