Myocardial Reperfusion with Streptokinase in an Asian Population with Acute Myocardial Infarction: Analysis of 60-Minute ST Resolution

Wai-Hong Chen
Yuk-Kong Lau
Pui-Yin Lee
Toi-Meng Mok

Follow this and additional works at: https://www.jhkcc.com.hk/journal

Recommended Citation

This Original Article is brought to you for free and open access by Journal of the Hong Kong College of Cardiology. It has been accepted for inclusion in Journal of the Hong Kong College of Cardiology by an authorized editor of Journal of the Hong Kong College of Cardiology.
Myocardial Reperfusion with Streptokinase in an Asian Population with Acute Myocardial Infarction: Analysis of 60-Minute ST Resolution

WAI-HONG CHEN1, YUK-KONG LAU1, PUI-YIN LEE2, TOI-MENG MOK3, MÁRIO ÉVORA3, CHU-PAK LAU3

From Department of Medicine, Ruttonjee Hospital1 and Queen Mary Hospital2, Hong Kong; Cardiologia, Centro Hospitalar Conde de São Januário3, Macau, China

CHEN ET AL.: Myocardial Reperfusion with Streptokinase in an Asian Population with Acute Myocardial Infarction: Analysis of 60-Minute ST Resolution. Aims: We sought to determine the efficacy of streptokinase in myocardial reperfusion in an Asian population with acute myocardial infarction by using 60-minute ST resolution and the predictors of complete ST resolution. Materials and Methods: We conducted a retrospective study on 96 consecutive Asian patients with acute myocardial infarction. All received streptokinase and had interpretable electrocardiograms (ECGs) before and 60 minutes after streptokinase initiation. ST resolution was categorised into three groups: complete (≥70%), partial (30% to <70%) and no (0% to <30%). Independent predictors of complete resolution were identified by multivariate analysis. The incidence of complete, partial, and no ST resolution was 24%, 27%, and 49% respectively. Independent predictors of complete ST resolution were inferior infarction (OR 7.82; CI 2.58-23.68; p=0.0003) and smoking history (OR 5.2; CI 1.42-19.07; p=0.0147). In a subgroup of patients (n=43) with interpretable ECGs at both 60 and 90 minutes, the incidence of complete, partial and no ST resolution changed from 12%, 23%, and 65% to 26%, 44%, and 30% respectively (p=0.01). Conclusion: Streptokinase restored myocardial perfusion in 24% of an Asian population 60 minutes after initiation. Independent predictors of myocardial reperfusion were inferior infarction and smoking history. The majority of patients without complete ST resolution at 60 minutes did not have successful myocardial reperfusion by 90 minutes without additional intervention. (J HK Coll Cardiol 2001;9:133-138)

Acute myocardial infarction, Asians, fibrinolysis, myocardial reperfusion, ST resolution, streptokinase

Address for reprints: Prof. Chu-Pak Lau
Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong
Tel: (852) 2855 4244, Fax: (852) 2855 1143

Received April 2, 2001; revision accepted June 13, 2001
Introduction

Reperfusion therapy using fibrinolytic agents is the standard of care in the management of patients presenting with ST-elevation myocardial infarction. The goal of reperfusion therapy is rapid, complete, and sustained restoration of normal flow in the infarct-related artery (IRA), thereby preserving left ventricular function and reducing mortality. Recent evidence has shown that re-establishment of normal epicardial flow does not mean successful myocardial reperfusion.\(^1\) Despite attaining Thrombolysis in Myocardial Infarction grade 3 flow in the IRA, myocardial reperfusion may still be impaired after primary percutaneous transluminal coronary angioplasty. This is associated with larger infarcts, poor left ventricular functional recovery, and increased mortality.\(^2\)\(^-\)\(^6\) Two methods have been developed recently to characterise myocardial reperfusion. The Thrombolysis in Myocardial Infarction myocardial perfusion grade uses the clearance of the myocardial blush on the coronary angiogram to define different grades of myocardial reperfusion.\(^7\) This angiographic method of assessing myocardial reperfusion involves the performance of an invasive procedure and is not readily available. Resolution of ST elevation on the surface electrocardiogram (ECG) has been shown to correlate closely with myocardial contrast echocardiography findings\(^8\) and thus is a marker of myocardial reperfusion. Moreover, ST resolution carries prognostic implications in patients with acute myocardial infarction receiving fibrinolytic agents or undergoing primary percutaneous transluminal coronary angioplasty.\(^9\)\(^-\)\(^15\)

Materials and Methods

Study Population

We conducted a retrospective study on consecutive Asian patients admitted to the 3 participating institutions (Ruttonjee Hospital, Queen Mary Hospital, and Centro Hospitalar Conde de São Januário) from July 1999 to June 2000 with a diagnosis of acute myocardial infarction. All hospitals are major regional hospitals with an Emergency Department serving a predominant Asian population (>95%). Acute myocardial infarction was diagnosed by ischaemic chest discomfort \(\geq\) 30 minutes in duration and ST segment elevation \(\geq\) 0.1 mV in two contiguous limb leads or \(\geq\) 0.2 mV in two contiguous precordial leads. We limited the analysis to cases in which 1.5 million units of streptokinase were given and 12-lead ECGs before and 60 minutes after the administration of streptokinase were available.

ECG Analysis

ECGs of patients from each institution were analysed by a single investigator of that institution (WHC, PYL & TMM). The method of ECG analysis reported by Schröder et al was used.\(^16\) The magnitude of ST segment elevation was measured manually 20 ms after the end of the QRS complex from leads I, aVL and V1 to V6 for anterior MI and leads II, III, aVF and V5 to V6 for inferior MI. Reciprocal ST depression \(\geq\) 0.1 mV in leads II, III and aVF for anterior MI and in leads V1 to V4 for inferior MI were included. The sum of ST deviation was calculated at baseline and 60 minutes after initiation of streptokinase. Whenever available, measurement was also made at 90 minutes. The percent resolution of ST deviation was calculated and categorised into 3 groups according to Schröder's definition: complete resolution (\(\geq\) 70%), partial resolution (30% to <70%), and no resolution (0% to <30%).

Statistical Analysis

Continuous variables were expressed as mean±SD and 95% confidence interval where appropriate. Categorical variables were compared using Pearson chi square tests or Fisher's exact test where appropriate. Continuous variables were compared using one-way analysis of variance (ANOVA) (F tests). A logistic regression analysis using forward technique was
employed to determine significant independent predictors of complete ST resolution. A significant level was defined when p<0.05. Data were analysed using the SPSS 6 software package (SPSS Inc., Prentice Hall, New Jersey).

Results

The clinical characteristics of the patients are summarized in the Table 1. Among the 96 patients with interpretable ECGs 60 minutes after initiation of streptokinase, 24%, 27%, and 49% had complete, partial, and no ST resolution respectively. When compared with the groups with partial or no resolution, the group with complete resolution had a higher prevalence of a smoking history (p=0.027) and an inferior location of myocardial infarction (p=0.0001). More patients with complete resolution (91%; versus 62% and 68% for the partial and no resolution groups respectively; p<0.05) received streptokinase ≤4 hours after symptom onset. The mean symptom-onset to treatment time was 80 minutes earlier for the complete resolution group compared with the other two groups combined (160±71 minutes versus 240±189 minutes; p=0.003). Almost 80% of the patients with complete resolution had inferior infarction. The reverse was noted in the partial resolution group. More anterior myocardial infarction was also observed among patients with no resolution but of a smaller magnitude (~60%). For patients with inferior myocardial infarction, 83% had a symptom-onset to treatment time ≤240 minutes and 59% had a sum of ST deviation ≤1.0 mV, compared with 64% and 33% respectively of patients with anterior myocardial infarction. Prior myocardial infarction was less common in the complete resolution group than in the partial

<table>
<thead>
<tr>
<th></th>
<th>All [n=3]</th>
<th>Complete Resolution [n=23 (24%)]</th>
<th>Partial resolution [n=26 (27%)]</th>
<th>No Resolution [n=47 (49%)]</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (y)</td>
<td>65</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>NS</td>
</tr>
<tr>
<td>>65, %</td>
<td>53</td>
<td>52</td>
<td>50</td>
<td>55</td>
<td>NS</td>
</tr>
<tr>
<td>Chinese, %</td>
<td>95</td>
<td>100</td>
<td>92</td>
<td>94</td>
<td>NS</td>
</tr>
<tr>
<td>Male sex, %</td>
<td>82</td>
<td>91</td>
<td>81</td>
<td>79</td>
<td>NS</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>22</td>
<td>22</td>
<td>31</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>36</td>
<td>35</td>
<td>38</td>
<td>36</td>
<td>NS</td>
</tr>
<tr>
<td>Hypercholesterolaemia, %</td>
<td>58</td>
<td>70</td>
<td>54</td>
<td>55</td>
<td>NS</td>
</tr>
<tr>
<td>Current or ex-smoker, %</td>
<td>65</td>
<td>87</td>
<td>54</td>
<td>57</td>
<td>0.027</td>
</tr>
<tr>
<td>Prior MI, %</td>
<td>11</td>
<td>4</td>
<td>27</td>
<td>6</td>
<td>0.014</td>
</tr>
<tr>
<td>Heart failure, %</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>NS</td>
</tr>
<tr>
<td>Anterior MI, %</td>
<td>58</td>
<td>22</td>
<td>81</td>
<td>62</td>
<td>0.0001</td>
</tr>
<tr>
<td>Killip class >1, %</td>
<td>23</td>
<td>13</td>
<td>27</td>
<td>30</td>
<td>NS</td>
</tr>
<tr>
<td>Cardiogenic shock, %</td>
<td>7</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td>NS</td>
</tr>
<tr>
<td>Mean duration from symptom-onset to treatment, min</td>
<td>241</td>
<td>160</td>
<td>247</td>
<td>237</td>
<td>NS</td>
</tr>
<tr>
<td>Time from symptom onset to treatment ≤240 min, %</td>
<td>72</td>
<td>91</td>
<td>62</td>
<td>68</td>
<td>0.0497</td>
</tr>
<tr>
<td>Σ ST Δ, mV</td>
<td>1.5±1.0</td>
<td>1.2±0.9</td>
<td>1.7±1.2</td>
<td>1.5±0.9</td>
<td>NS</td>
</tr>
<tr>
<td>- Anterior MI</td>
<td>1.8±1.1</td>
<td>2.1±1.0</td>
<td>1.8±1.3</td>
<td>1.8±1.0</td>
<td></td>
</tr>
<tr>
<td>- Inferior MI</td>
<td>1.1±0.7</td>
<td>1.0±0.7</td>
<td>1.3±0.1</td>
<td>1.1±0.6</td>
<td></td>
</tr>
<tr>
<td>In-hospital mortality, %</td>
<td>10</td>
<td>0</td>
<td>19</td>
<td>17</td>
<td>NS</td>
</tr>
</tbody>
</table>
resolution group, but was of similar prevalence to the no resolution group. A trend of lower in-hospital mortality was observed among patients with complete resolution (p=0.089).

Variables associated with complete resolution by univariate analysis were inferior infarction (p=0.00008), smoking history (p=0.007), symptom-onset to treatment time ≤4 hours (p=0.017), and absence of acute congestive heart failure (p=0.049). By multivariate analysis, inferior MI (odds ratio 7.8, 95% confidence interval 2.59-23.68; p=0.0003) and smoking history (odds ratio 5.2, 95% confidence interval 1.42-19.07; p=0.0147) were independent predictors of complete resolution.

For a subgroup of patients (n=43) with interpretable ECGs 60 and 90 minutes after commencement of streptokinase, the incidence of complete resolution increased from 12% at 60 minutes to 26% at 90 minutes (p=0.01145). The incidence of partial resolution also increased from 23% to 44%. Conversely, during the same time interval the incidence of no resolution decreased from 65% to 30%. (Figure 1)

Discussion

To our knowledge this is the first analysis on myocardial reperfusion measured by ST resolution at 60 minutes in an Asian population treated with streptokinase for acute myocardial infarction. The ISAM and INJECT substudies reported on ST resolution at 180 minutes after streptokinase in Caucasian patients.9,16 Complete ST resolution occurred in about half the patients 180 minutes after streptokinase initiation. Compared with these two studies and recent trials on reperfusion therapy in acute myocardial infarction,15,17-18 our population was older, had more diabetes, anterior myocardial infarction, and higher Killip classes. These characteristics are more typical of patients treated in the community rather than those selected for reperfusion trials. Streptokinase was able to restore myocardial perfusion in about a quarter of this high-risk cohort with acute myocardial infarction within 60 minutes of therapy. The unfavourable profile of our population may partly account for the large difference in complete ST resolution measured at an earlier time frame. Our data

![Figure 1. Distribution of ST resolution of 43 patients at 60 and 90 minutes after administration of streptokinase. STR 60=ST resolution at 60 minutes. STR 90=ST resolution at 90 minutes.](image-url)
also suggested that streptokinase is inferior to lanoteplase, a third-generation fibrinolytic, in accomplishing early myocardial reperfusion. ST resolution at 60 minutes was achieved in 33% of the patients treated with lanoteplase, compared with 24% in our study.

Smoking history (including both current and ex-smokers) and inferior myocardial infarction were identified as independent predictors of successful myocardial reperfusion. These two variables have also been reported as determinants of a lower short-term mortality among patients treated with fibrinolytic therapy in the GUSTO-I trial. It has been suggested that smokers have a smaller atherosclerotic burden and a higher thrombus load at the site of coronary occlusion, and therefore respond better to fibrinolytic therapy. However, subsequent angiographic studies did not confirm this hypothesis. Grines et al found that smokers had a larger minimum luminal diameter of the IRA stenosis but a similar percent diameter stenosis whereas Zahger et al. observed no differences with respect to residual stenosis and thrombus grade between smokers and non-smokers. One finding in common is the higher incidence of Thrombolysis in Myocardial Infarction grade 3 flow at 90 minutes, which is the most important factor to account for the short-term survival benefit of smokers. Purcell et al, using the ST resolution in the lead with maximum ST elevation, showed a similar incidence of 50% resolution at 60 minutes between current smokers and non-smokers (44% vs 43%). More non-smokers compared with current smokers failed to achieve a 25% ST resolution by 180 minutes (35% vs 16%). Our findings confirm the better response of patients with a smoking history to fibrinolytic therapy and provide additional insight by showing enhanced early myocardial reperfusion in these patients. By mechanisms still unknown, the favourable response to fibrinolysis in current and ex-smokers is seen in the better myocardial reperfusion and is translated into a short-term survival benefit.

We observed in the present study that fewer patients with anterior myocardial infarction achieved complete resolution, a finding consistent with the results of other studies. This may be explained by the systematic under-estimation of the degree of ST resolution in patients with anterior myocardial infarction because the J point is not uncommonly elevated in the anterior precordial leads in normal and pathological states. Another explanation may be that anterior myocardial infarction is associated with a higher resistance to myocardial reperfusion. A large area of myocardium at risk is present in anterior myocardial infarction. Moreover, more patients with anterior myocardial infarction in the present study had an ischaemic time longer than 4 hours compared with patients with inferior myocardial infarction (36% vs 17%, p=0.037). Both factors are related to oxidative stress and a lack of recovery of aerobic metabolism. Subsequent neutrophil plugging of capillaries and oedema lead to an increased impedance to flow. These factors may account for the poor response of anterior myocardial infarction to fibrinolytic therapy for myocardial reperfusion compared with inferior myocardial infarction.

The prognostic value of 60-minute ST resolution has been validated in the InTIME-II substudy. A stepwise correlation exists between 60-minute ST resolution and both the short- and long-term mortality. In the present study, we also noted a trend for lower inhospital mortality among patients with complete resolution. Although a proportion of patients developed complete resolution without further treatment from 60 to 90 minutes, approximately three-quarters of the patients still did not achieve complete resolution by 90 minutes after initiation of streptokinase. By analysing the ECG 60 minutes after fibrinolytic therapy, a simple, quick, and non-invasive method is available to guide decision on further management. For patients without complete ST resolution by 60 minutes, a large proportion (84%) will continue to have partial or no resolution by 90 minutes. These patients either have the infarct-related artery persistently occluded, or no myocardial salvage despite a patent infarct-related artery by angiography. Given the promising results of rescue percutaneous transluminal coronary angioplasty, this group of patients should be considered for emergency revascularisation.

Acknowledgement

We are grateful to Dr. Fook Hong Ng for his expert statistical advice and to the nursing staff of the Coronary Care Units of the hospitals involved for their support.
References

27. Purcell IF, Newall N, Farring M. Change in ST segment elevation 60 minutes after thrombolytic initiation predicts clinical outcome as accurately as later electrocardiographic changes. Heart 1997;78:465-71.

29. Ferrari R. Metabolic disturbances during myocardial ischemia and reperfusion. Am J Cardiol 1995;76:17B-24B.