Fractional Flow Reserve: Overview and Implications for Clinical Decision Making

William Kong-To Hau

Follow this and additional works at: https://www.jhkcc.com.hk/journal

Recommended Citation
William Kong-To Hau, Fractional Flow Reserve: Overview and Implications for Clinical Decision Making Journal of the Hong Kong College of Cardiology 2003;11(3) https://doi.org/10.55503/2790-6744.1157

This Review Article is brought to you for free and open access by Journal of the Hong Kong College of Cardiology. It has been accepted for inclusion in Journal of the Hong Kong College of Cardiology by an authorized editor of Journal of the Hong Kong College of Cardiology.
Fractional Flow Reserve: Overview and Implications for Clinical Decision Making

WILLIAM KONG-TO HAU

From Department of Physiology and Institute of Cardiovascular Science and Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong

HAU: Fractional Flow Reserve: Overview and Implications for Clinical Decision Making. Pressure derived fractional flow reserve (FFR) is a well-validated index to assess functional significance of stenosis severity that has evolved from a physiological index to a clinical tool. The objective of this paper is to provide a short overview of the theoretical and physiological background of this physiological assessment technique and to focus on its clinical applicability in both diagnostic and interventional procedures. (J HK Coll Cardiol 2003;11:83-89)

Fractional flow reserve, hyperemia, pressure guide wire, vasodilator

Introduction

One of the main limitations of coronary angiography is the inability to determine the physiological significance of a stenosis on coronary blood flow. As a result, physiological assessment techniques have been introduced to determine the functional significance of coronary lesions that may require revascularization. With recent technology advances in interventional cardiology, miniaturized pressure sensing guide wires for the assessment of distal coronary pressure are now available. Also with the development of the fractional flow reserve (FFR) index have offered an easy and convenient method for measuring the physiological impact of a coronary stenosis. FFR is defined as the ratio of the maximal blood flow achievable in a stenotic vessel to the normal maximal flow in the same vessel, which represents the fraction of maximum flow that can still be maintained in spite of the presence of the stenosis. FFR is an important index in the diagnosis of myocardial ischemia and the decision for coronary intervention. It is exactly this index which indicates to what degree a patient is limited by the coronary stenosis.

Concept of Fractional Flow Reserve

FFR has been extensively studied and clinically validated. The basis of the concept is illustrated in Figure 1. Under conditions of maximum arteriolar vasodilation, myocardial resistance of that system will be minimal, and thus blood flow is proportional to driving pressure. If there is no stenosis in the artery,
Maximum myocardial flow in the presence of a coronary stenosis

$$\text{FFR} = \frac{\text{Pd} - \text{Pv}}{\text{Pa} - \text{Pv}} \equiv \frac{\text{Pd}}{\text{Pa}}$$

Where Pd, Pa, and Pv represent mean aortic, distal coronary and central venous pressures obtained at maximum coronary hyperemia. Because central venous pressure usually is close to zero, Pv can be neglected. As a result, an accurate estimate of FFR can be derived from the ratio of mean distal coronary artery pressure to aortic pressure during maximal coronary hyperemia. Pa is measured routinely by the coronary guiding catheter, the only things needed to measure FFR are a pressure guide wire enabling reliable distal coronary pressure recording and a maximum hyperemic stimulus. The standard means for inducing hyperemia is by the administration of adenosine.

FFR is a lesion specific index of epicardial stenosis severity. The theoretical unequivocal normal value for FFR is 1.0; a value of 0.75 reliably identifies stenosis associated with inducible ischemia. As a normal reference vessel is not required, FFR can be used in multivessel disease. The measurement of FFR is highly reproducible and is independent of changes in hemodynamics or myocardial contractility.

Coronary Pressure Measurement

At present, two FDA-approved pressure guide wire systems are available: Pressure Analyzer (RADI Medical Systems, Sweden) and WaveMap (JOMED AB, Sweden). Both are micromanometer-tipped 0.014-inch guide wires with a pressure sensor located just proximal to the junction between the radiopaque distal tip and the nonradiopaque part of the wire. Their handling characteristics are very similar to...
conventional angioplasty guide wires and are compatible with monorail balloon catheters. The proximal end of each wire is disconnectable and is connected to a special rotary connector. The rotary connector is then further connected into an interface box that will either display the distal coronary pressure itself or convert the signal into pressure displayed on the ordinary pressure monitoring system in the cardiac catheterization laboratory. The pressure monitoring guide wire is first zeroed and advanced up to the tip of the guiding catheter. At this location, the aortic pressure and the pressure obtained from the pressure monitoring guide wire should be identical, otherwise these two pressure signals need to be normalized before carrying out any further procedures. Thereafter, the pressure monitoring guide wire is then advanced and positioned distal to the lesion. The pressure gradient is recorded at baseline and after administering a stimulus, FFR is then automatically determined by the pressure interface box.

Pharmacologic Hyperemic Stimuli

Achievement of maximum hyperemia is needed in order to obtain a meaningful FFR measurement, otherwise the actual severity of the stenosis will be underestimated, and thus administration of a pharmacological vasodilator either as intracoronary (IC) bolus or as a continuous intravenous (IV) infusion is needed for coronary pressure measurement. Several pharmacological vasodilator agents have been used, including adenosine 5'- triphosphate (ATP), adenosine, papaverine and dobutamine (Table 1). Practically speaking, the use of short acting IC vasodilators such as adenosine, ATP or papaverine is desirable, maximal hyperemia can be achieved in a very short period of time, and the measurements can be repeated within a very short time interval. Recent studies by De Bruyne et al. suggested that by providing sufficient dosage, ATP, adenosine and papaverine are all able to induce maximal hyperemia, but not contrast medium. IC ATP or adenosine (20 to 40 ug) induces a similar degree of

<table>
<thead>
<tr>
<th>Table 1. Comparison of four different pharmacological vasodilator agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
</tr>
<tr>
<td>Intracoronary (IC) or Intravenous (IV)</td>
</tr>
<tr>
<td>Dosage</td>
</tr>
<tr>
<td>Time to onset of hyperemia</td>
</tr>
<tr>
<td>Duration of hyperemia</td>
</tr>
<tr>
<td>Pullback curve</td>
</tr>
<tr>
<td>Side effects</td>
</tr>
</tbody>
</table>
hyperemia as an IC bolus of 20 mg papaverine in human. However, only IV ATP or adenosine and IC papaverine are able to induce steady state hyperemia.

Adenosine

Adenosine is the most common pharmacological vasodilator agent used for physiological assessments. Several studies\(^9\)\(^10\) have shown that adenosine induces maximal vasodilation in a very short period of time (5 to 10 seconds), and the effect disappears within 30 sec. In addition, the magnitude of adenosine induced hyperemia appears to be similar to that induced by exercise-induced ischemia.\(^11\) Besides, compared with papaverine, intravenous adenosine was found to be equivalent in pharmacologic potency without significant adverse side effects such as QTc prolongation.\(^12\)\(^13\)

However, care must be taken during IC bolus adenosine administration. One must inject very rapidly, and flush the catheter with normal saline immediately after the drug administration. It is because IC adenosine bolus causes maximal hyperemia only for a short period of time (less than 10s). Even though it is recommended to use a dose of 15 to 20 ug in the right coronary artery (RCA) and 18 to 24 ug in the left coronary artery (LCA),\(^2\)\(^6\) there is evidence suggesting that for some patients higher doses may be needed to observe a better hyperemic response.\(^14\)\(^15\)

ATP

ATP has become a drug of choice recently, with the potential advantage of lower cost, and lower rate of side effect among the other common vasodilators used. ATP is a precursor of adenosine, and therefore would be expected to induce the same degree of coronary hyperemia as adenosine. Since the half-life of ATP is slightly longer than that of adenosine, it is commonly believed that the hyperemic response might be prolonged. ATP has been well established in human, it has been shown to induce maximum hyperemia for CFR (Coronary Flow Reserve) measurement\(^16\) and Thallium-201 myocardial tomography.\(^17\) Yamada et al\(^18\) have reported that 50 ug of intracoronary ATP has similar vasodilator potency as 10 mg papaverine and does not produce any significant hemodynamic or electrocardiographic changes.

Papaverine

Papaverine used to be considered as the gold standard for induction of maximum myocardial hyperemia.\(^19\) A steady state hyperemia can be reached within 30 to 60 seconds, and last for about 60 seconds after IC bolus administration of 20 mg. However, the use of this agent has been associated with some serious clinical side effects, such as polymorphic ventricular tachycardia,\(^20\) ventricular fibrillation\(^21\) and QTc prolongation.\(^12\)\(^13\) In addition, studies have also shown that IC infusion of papaverine induces a significant increase in coronary venous plasma lactate levels in patients with angiographically normal coronary artery.\(^22\)

Dobutamine

Studies on 22 patients with single vessel coronary artery disease by Bartunek et al\(^23\) showed that, IV infusion of dobutamine at 20 ug/kg/min induced similar degree of coronary hyperemia as adenosine, and higher dose of IV infusion did not further affect the myocardial resistance. However, up to present, there are only a few experimental and clinical studies on the effect of this agent on myocardial perfusion, studies on the feasibility and safety of using this agent as a stimulus for physiological assessment of a stenosis need to be further explored.

Intravenous (IV) vs. Intracoronary (IC)

Generally speaking, IC bolus administration offers more practical advantages than the IV infusion. IC bolus administration is much easier and faster, and a central venous access site is not needed. Only a small fraction of the IV dosage is needed for IC bolus administration, leading to significant reduction of cost. For example, compared with IC adenosine (20-40 ug for LCA; 15-20 ug for RCA), IV adenosine requires relatively large doses (140 ug/kg/min) and is therefore more costly. IC adenosine has an extremely rapid onset of action, which makes it the ideal drug for repetitive measurements. Jeremias et al\(^24\) examined differences in FFR between IC and IV adenosine in 52 patients, and the results showed IC adenosine is equivalent to IV infusion for determination of FFR in large majority of patients. However, in a small percentage of patients...
administered with IC adenosine, coronary hyperemia was believed to be sub-optimal, and a repeated higher IC adenosine may be needed. In addition, IV adenosine is associated with more side effects than IC adenosine.

On the other hand, interruption of the aortic pressure signals recording is needed for IC bolus administration. Thus, it is very important to inject the drug quickly and to flush with saline, after which the aortic pressure should be immediately displayed. This is especially important when IC ATP or adenosine is used, the peak hyperemic period is only 5 to 10 seconds long, and thus, a delay in obtaining the aortic pressure may result in inaccurate pressure measurement. The use of guiding catheters with side-holes should be avoided, and proper engagement of guiding catheter should be ensured for preventing partial loss of the hyperemic drug, otherwise the pressure measurements are unreliable.

Furthermore, IC bolus administration can only determine the FFR at a single point in the arterial system. For artery with multiple lesions, in order to evaluate the physiological impact of each individual lesion on the pressure drop, a pressure pullback curve can be obtained by withdrawing the pressure guide wire very slowly across the entire target artery. This curve represents the pressure gradient over the entire length of the artery and enables the registration of multiple lesions in the presence of diffuse disease. For this purpose a continuous maximal hyperemic condition is necessary, and only IC papaverine and IV ATP or adenosine induce complete, true steady state hyperemia to enable a pressure pull back maneuver. Pullback pressure recording during maximal hyperemia provides a clear demonstration of the exact location and severity of the stenosis.

FFR and Clinical Outcome

Diagnostic Applications

FFR is proven as a very useful diagnostic tool to determine whether a stenosis, found at angiography, is flow limiting and as a result is responsible for myocardial ischemia. Studies on 45 patients with moderate coronary stenosis and chest pain of uncertain origin conducted by Pijls et al. showed that, a FFR below 0.75 is functionally significant and has been found to correlate well with the presence of ischemia on perfusion scintigraphy, stress echocardiography and bicycle exercise testing, and that the specificity and sensitivity of FFR are 100% and 88%.

Retrospective and prospective work from the DEFER study (A randomized comparison of performance versus deferral of angioplasty based upon coronary pressure-derived fractional flow reserve) suggested that, in patients with chest pain referred for angioplasty of an intermediate stenosis, deferral of intervention in patients with FFR exceeding 0.75 is safe and results in an excellent clinical outcome.

FFR guided PTCA

It has been shown a high FFR value after balloon angioplasty is associated with a favorable long-term outcome. Studies conducted by Bech et al. showed that long term clinical outcome after PTCA in patients with both FFR of >0.90 and residual DS of <35% is excellent and comparable with that event observed after coronary stenting. In patients with post-PTCA FFR exceeding 0.90, the restenosis rate at 6, 12 and 24 months were 11%, 12% and 15% compared with 29%, 32% and 42% in patients with post-PTCA FFR below 0.90 and a very similar angiographic result. Therefore, even with an angiographically excellent result, patients with a FFR value below 0.90 still have a high event rate, and further improvement may be achieved with coronary stent implantation.

FFR and Stent Implantation

For a normal vessel, even during maximum hyperemia, no pressure drop should be observed and the value of FFR should be equal to 1. As a matter of fact, after coronary stent implantation, the conductance of the epicardial vessel should have normalized, and the FFR should be close to its normal value. Thus, it is suggested that FFR can also be used to evaluate the result of stent placement.

One recent study showed that, post-stenting FFR is a strong independent predictor of outcome at 6 months. For patients with post-stenting FFR exceeding 0.95, event rate is 4.9%; for post-stenting FFR between 0.90 and 0.95 event rate is 6.2%; for post-stenting FFR
between 0.80 and 0.90, event rate is 20.3%; and for post-stenting FFR below 0.80, event rate is 29.5%. Another FFR after stenting study conducted by Hanekamp et al30 further suggested that post-stenting FFR exceeding 0.94 corresponds very well to intravascular ultrasound (IVUS) results. Based on all this evidence, it becomes a common practice to use FFR to guide coronary stent placement. This research topic also draws the attention of another research group from the States. Studies by Fearon et al31 showed that, based on validated IVUS criteria, post-stenting FFR below 0.96 predicts a suboptimal stent implantation result; however, the result of this study also suggested that, an post-stenting FFR exceeding 0.96 does not reliably predict an optimal stenting result.

Even though whether post-stenting FFR is reliable in evaluates optimal stent implantation is still a controversial issue, it is commonly believed that, the higher the value of post-stenting FFR, the better the long term clinical outcome.

FFR and IVUS

Other than providing valuable information regarding the morphology and distribution of coronary plaques, IVUS may also help in assessing the functional significance of a coronary stenosis. Takagi et al32 demonstrated that IVUS minimal lumen area <3.0 mm² and an area stenosis >60% had a potential to predict FFR below 0.75. Recently, another comparing IVUS and FFR study conducted by Briguiori et al33 showed that, an area stenosis >70%, minimal lumen diameter of <1.8 mm, and a minimal lumen cross section area of <4.0 mm² were the best cutoff values for a FFR of below 0.75. Even though the IVUS thresholds of the two studies were different, the results of the studies were strongly supporting the idea that, there is a strong correlation between the FFR and IVUS findings.

Discussion

Measurement of FFR with a pressure guide wire is safe, rapid and efficient. However, this physiological assessment technique is not routinely practiced in Hong Kong or elsewhere. Three major concerns remain: 1) FFR measurement requires additional expense for the pressure guide wire and the interface box. 2) Well-trained operators and cathlab staff are needed, and the learning curve is quite long and slow. 3) Performing the pressure measurement procedure is time consuming, because exchange of balloon catheters and/or further stent deployment is needed to optimize results. Generally speaking, time should not be a concern if the cathlab staff are well trained, and the necessary components are properly prepared, i.e. the pressure console is well calibrated, cable connections are in good order, the stimulus is ready to go, and extra pressure guide wires are available in case of wire failure.

In conclusion, FFR is very useful in determining whether or not a patient will benefit from a coronary intervention. If a lesion is not physiological significant, patients will not benefit from the procedure, and medical treatment, which is safer and may eventually result in a better outcome, should be used instead. Furthermore, FFR measurement provides significant prognostic benefit and improves the quality of the intervention. As mentioned previously, a high FFR value after angioplasty or stenting is associated with a favorable long-term clinical outcome. Thus, even though the initial treatment cost is high, this extra cost is offset by a better long-term clinical outcome. Given the high cost of intervention procedures, more research on the cost-effectiveness of routine FFR guidance is needed.

References

